School Mathematics Scope \& Sequence (K through 12)

 (Draft 2012)(A document summarizing the Common Core State Standards (CCSS) with the list of key concepts, skills, and procedures with interpretation and sequencing needed to be mastered to implement the CCSS effectively and efficiently.)

Mathematics for All
Center for Teaching/Learning of Mathematics
754 Old Connecticut Path
Framingham, MA 01701
mailto:info@mathematicsforall.org
5084944608 (T) 5087883600 (F)
http://www.mathematicsforall.org

Math Scope \& Sequence (Common Core \& Sharma)

Common Core	K	1	2
Big Ideas (Sharma)	Know the ten numbers well and recognize (decomposition/re-composition) important and common objects.	Additive Reasoning: Understand and learn additive reasoning; automatize 10×10 addition facts.	Mastering Additive Reasoning (the inverse relationship between addition and subtraction-able to convert an addition into subtraction problem, fact, and statement
$\begin{aligned} & \text { By the end of the grade, } \\ & \text { students should be } \\ & \text { proficient with related } \\ & \text { math language and ... } \\ & \hline \end{aligned}$		Addition facts ($\mathbf{1 0} \times 10$ grid)	Subtraction (10 $\times 10$ grid) Tables (1, 2, 5, and 10)
Counting and Cardinality	- Know number names and the count sequence. (at least to 100, forward \& backward) - Count to tell the number of objects. - Compare numbers.	Count forward and back by 2 \& 10 from any number	Count forward and back by 2, 5, 10 from any number Multiplication tables (1, 2, 5, 10) as counting
Operations and Algebraic Thinking K.OA	- Understand addition as putting together and adding to, and understand subtraction as taking apart and taking from.	- Represent and solve problems involving addition and subtraction. - Understand and apply properties of operations and the relationship between addition and subtraction. - Add and subtract within 20. - Work with addition and subtraction equations.	- Represent and solve problems involving addition and subtraction procedures (with \& without borrowing) - Add and subtract within 20. - Work with equal groups of objects to gain foundation for multiplication as repeated addition. (Multiplication tables of $1,2,5$, and 10),
Number and Operations in Base ten	- Work with numbers 11-19 to gain foundations for place value.	- Extend the counting sequence. - Understand place value. (3 digit) - Use place value understanding and properties of operations to add and subtract - Read, write, express numbers in hundreds	- Understand place value. (read, write, express numbers in at least two cycles i.e. 100,000) standard, semi-standard and expanded form - Apply place value to time \& measurement - Use place value understanding and properties of operations to add and subtract.
Fractions		Recognition of fractions (whole, halving, fourths)	Recognition of fractions (1/2, 1/3, 1/4, 1/10)
Measurement and Data	- Describe and compare measurable attributes. - Classify objects and count the number of objects in categories. (use body parts)	- Measure lengths indirectly and by iterating length units. (body parts \& go between) - Tell and write time. - Represent and interpret data.	- Measure and estimate lengths in standard units. (using wholes \& halves) - Relate addition and subtraction to length. (time, perimeter, and measurement) - Work with time and money. - Represent and interpret data.
Geometry	- Identify and describe shapes. - Analyze, compare, create, and compose shapes.	- Reason with shapes and their attributes. - Recognize, describe and draw basic figures	- Reason with shapes and their attributes. - Recognize, describe and draw basic figures

Common Core K-12

Mathematical Practices

1. Make sense of problems and persevere in

solving them.

2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the
reasoning of others.
4. Model with mathematics
5. Use appropriate tools strategically

> 6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated
reasoning.

Elements of effective mathematics teaching (Sharma):

1. Integrate language, concepts, and procedures of mathematical idea
. Know that mathematics is the study of patterns in quantity and space
2. Apply levels of knowing: intuitive, concrete, pictorial, abstract, application, and communication
3. Questioning Process: the quality of questions determines the effectiveness of teaching
4. Instructional models should range form discrete to continuous and should be exact, efficient, and elegant
5. Teacher must practice three roles: didactic, Socratic, and coaching

Math Scope \& Sequence Draft 2011 (Common Core \& Professor M. Sharma)

		Math Scope \& Sequence Draft 2011 (Co
Common Core	3	4
Big Ideas (Sharma)	Multiplicative Reasoning: Transition from additive to multiplicative reasoning (following the mastery of the inverse relationships between addition and subtraction.)	Mastering Multiplicative Reasoning (the inverse relationship between multiplication and division-able to convert an multiplication problem, fact, and statement into a division problem, fact or statement):
By the end of the grade, students should be proficient with related math language and ...	1. Tables 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12; 2. Relate and automatize multiplication and division facts (fluency with understanding) 3. Addition \& Subtraction of Whole Numbers	1. Tables $1,2,3,4,5,6,7,8,9,10,11$, and 12 ; 2. Relate and automatize multiplication and division facts with properties (commutative, associative, and distributive)
Counting and Cardinality	- Count forward and back by $2,5,10,100,1 / 2$ from any number	Counting forward and backward by $2,5,10$, $1 / 2,1 / 3,1 / 4,1 / 5,1 / 10$ from any given number
Operations and Algebraic Thinking	- Represent and solve problems involving multiplication and division. - Understand properties of multiplication and the relationship b/w multiplication and division. - Multiply and divide within 100. - Solve problems involving the four operations, and identify and explain patterns in arithmetic	- Master and use the four operations with whole numbers to solve problems. - Gain familiarity with factors and multiples. - Generate and analyze numerical and spatial patterns. - Operations on multi-digit numbers (addition, subtraction, multiplication, and division) with and without borrowing
Number and operations in base ten	Use place value understanding and properties of operations to perform multi-digit arithmetic. (Red, write, express numbers in any \# of cycles in standard, semi-standard and expanded forms)	- Generalize place value understanding for multidigit whole numbers. Express in standard, semi-standard and expanded forms - Use place value understanding and properties of operations to perform multi-digit arithmetic. (Read, write, express numbers in any \# of cycles and simple decimals
Number and operations fractions	- Develop understanding of fractions as numbers by locating factions on the number line.	- Extend understanding of fraction equivalence and ordering. - Build fractions from unit fractions by applying and extending previous understandings of operations on whole numbers. (add/subtract simple fractions) - Understand decimal notation for fractions, and compare decimal fractions.
Measurement and data	- Solve problems involving measurement and estimation of intervals (time, liquid volume, mass) - Represent and interpret data. - Geometric measurement: understand concepts of area and relate to multiplication and addition and recognize perimeter as an attribute of plane figures, distinguish between linear and area measures.	- Solve problems involving measurement and conversion of measurements from a larger unit to a smaller unit. (standard units whole \& halves) - Represent and interpret data. - Geometric measurement: understand concepts of angle and measure angles.
Geometry	- Reason with shapes and their attributes. - Recognize, describe and draw basic figures \& their relationships	Draw and identify lines and angles, and classify shapes by properties of their lines and angles.

Proportional Reasoning: Expand the idea of division to
fractions; master the operations (addition, subtraction,
multiplication, division) on fractions (fractions, decimals,
percents) and their applications and understand the inverse
relationship between the number of parts and the size of each part when making fractions from a whole.

1. Multiplication and Division of Whole Numbers
2. Identify and represent fractions and decimals, and compare them on a number line or with other common representations 3. Fractions and decimals and common percents, and with the addition and subtraction of fractions and decimals.
3. Solve problems involving perimeter and area of triangles and all quadrilaterals having at least one pair of parallel sides Counting forward and backward by $2,5,10,1 / 2,1 / 3,1 / 4,1 / 5$, 1/10 or . 1 from any given number
-Write and interpret numerical expressions

- Analyze patterns and relationships.
- Divisibility rules for $2,3,4,5,6,8,9$, and 10
- Understand the place value system.for any digit numbers
(Express in standard, semi-standard and expanded form)
- Perform operations with multi-digit whole numbers and with
decimals to hundredths. (Addition, subtraction, multiplication, and division with and without borrowing)
(Read, write, express numbers in any \# of cycles and decimal \#s)
- Use equivalent fractions as a strategy to add and subtract fractions.
- Apply and extend previous understandings of multiplication and division to multiply and divide fractions.
- Relate fractions, decimals, percents, and ratio; Operations on
- Measurement using standard units (correct up to tenths) - Convert like measurement units within a given measurement - Conve
- Represent and interpret data (make inferences)
- Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition. Measure any polygon
- Use coordinate plane to solve real-world and math problems. - Classify plane figures (classify quadrilaterals) into categories from properties.
- Recognize, describe, and draw basic figures and their relationships; calculate perimeter of polygons and area of relationships; calculate perimeter of poly
rectangles, triangles, and derived shapes

them

2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure
8. Look for and express regularity in repeated reasoning.

Elements of effective mathematics teaching (Sharma):

1. Integrate language, concepts, and procedures
. Know that mathematics is the study of patterns in quantity and space
. Levels of knowing: intuitive, concrete, pictorial, abstract, application, and communications
Questioning Process: the quality of questions Questioning Process: the quality of quin
2. Instructional models should range form discrete to rint ind beicient, and corer must prate three roles: didactic, Socratic, Teacher must and coaching
3. With proper scaffolding a teacher can fill the gaps in a student's skills and concepts and take the child to a higher level of thinking.
4. Effective scaffolding involves: common goals (teacher and student), continuous formative assessment, proper questioning, and fading

Math Scope \& Sequence Draft 2011 (Common Core \& Professor M. Sharma)

Common Core	6	7	8
Big Ideas (Sharma)	Proportional Reasoning: Consolidate the mastery of operations on fractions and expand to ratio, proportion, rate, scale factor; Expand the Number system to include integers, rational numbers and apply proportional reasoning	Big Idea-Algebraic Reasoning: concept of variability; Consolidate proportional reasoning; extending arithmetic reasoning to generalizationsrate of change, slope, scale factor, transformations; fluency in operations on rational numbers	Algebraic Thinking and Modeling: Consolidate algebraic thinking; Operations on algebraic expressions; Mastering linear equations; understanding non-linear relationships such as quadratic expressions and forming and working with equations; Transformations between representations-tabular, graphing, patterns, equations.
By the end of the grade, students should be proficient with related math language and ...	1. Multiplication and division of fractions and decimals. 2. All operations involving positive and negative integers 3. Analyze the properties of two dimensional shapes and solve problems involving perimeter and area, 4. Analyze the properties of three-dimensional shapes and solve problems involving surface area and volume.	1. All operations involving rational numbers. 2. Solving problems involving percent, ratio, and rate and extend this work to proportionality. 3. Relationships between similar triangles and the concept of the slope of a line.	
Counting and Cardinality	Counting forward and backward by any number (whole, fraction, decimal) from any given number)	Locating numbers (whole numbers, integers, rationals) on number line	Locating numbers (whole, integers, rationals, and real numbers)
Ratios and Proportional Relationships	- Understand ratio concepts and use ratio reasoning to solve problems. - Relate fractions, decimals, percents, and ratio; operations on	Analyze proportional relationships and use them to solve real-world, mathematical problems, and perform dimensional analysis	Generalizing the idea of ratio and proportion to linear and distinguish it from non-linear relationships
The Number System	\cdot Reading, writing, and expressing numbers in any number of cycles and decimal numbers - Place value any digit number including decimals (standard, semi-expanded, expanded and exponential) forms - Apply and extend previous understandings of multiplication and division to division of fractions - Compute fluently with multi-digit numbers and find common factors and multiples. - Apply and extend previous understandings of numbers to the system of rational numbers.	- Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers. - \quad Place value any digit number including decimals (standard, semi-expanded, expanded, and exponential) forms	- Know that there are numbers that are not rational and approximate irrationals by rational numbers (terminating, non-terminating, and repeating decimals)
Expressions \& Equations	- Apply and extend previous understandings of arithmetic to algebraic expressions and operations - Reason about and solve one-variable equations and inequalities. - Represent and analyze quantitative relationships between dependent \& independent variables.	- Use properties of operations to generate equivalent expressions - Solve real-life and mathematical problems using numerical and algebraic expressions and equations	- Work with radicals and integer exponents. - Understand the connections between proportional relationships, lines, and linear equations. - Analyze and solve linear equations and simultaneous linear equations using various methods.
Functions		Expand the ideas of fraction machines to relations and functions	- Define, evaluate, and compare functions. - Use functions to model relationships b / w quantities.
Geometry	- Solve real-world and mathematical problems involving area, surface area, and volume. - Recognizing, describing, and drawing all the basic figures and their relationships; calculate perimeter of any polygon and circle and area of rectangles, triangles, and derived shapes made of these shapes and circles; genealogy of quadrilaterals and triangles	- Draw, construct and describe geometrical figures and describe the relationships between them. - Solve real-life and mathematical problems involving angle measure, area, surface area, and volume.	- Understand congruence and similarity using physical models, transparencies, or geometry software. - Understand and apply the Pythagorean theorem. - Solve real-world and mathematical problems involving volume of cylinders, cones \&spheres.
Probability \& Statistics	- Develop understanding of statistical variability. - Summarize and describe distributions. - Representations of data and making inferences	- Use random sampling to draw inferences about a population. - Draw informal comparative inferences about two populations. - Investigate chance processes and develop, use, and evaluate probability models.	- Investigate patterns of association in bivariate data.

Common Core K-12 Mathematical Practices

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others
4. Model with mathematics
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure
8. Look for and express regularity in repeated reasoning.

Elements of effective mathematics teaching

 (Sharma):1. Integrate language, concepts, and procedures
2. Know that mathematics is the study of patterns in quantity and space
3. Levels of knowing: intuitive, concrete, pictorial, abstract, application, and communications
4. Questioning Process: the quality of questions determines the effectiveness of teaching
5. Instructional models should range form discrete to continuous and should be exact, efficient, and elegant
6. Teacher must practice three roles: didactic, Socratic, and coaching
7. With proper scaffolding a teacher can fill the gaps in a student's skills and concepts and take the child to a higher level of thinking.
8. Effective scaffolding involves: common goals (teacher and student), continuous formative assessment, proper questioning, and fading

Math Scope \& Sequence Draft 2011 9 $^{\text {th }}$ through 11 ${ }^{\text {th }}$ Grade (Common Core \& Sharma)

Quantitative thinking and Its

Representations

The Real Number System

- Extend the properties of exponents to rational exponents
- Master arithmetic operations on and use properties of rational and irrational numbers in solving problems

Quantities

- Reason quantitatively and use units and dimensional analysis to solve problems
The Complex Number System - Perform arithmetic operations on the set of complex numbers
- Represent complex numbers and their
operations on the complex plane - Use complex numbers in polynomial identities and equations
Vector and Matrix Quantities - Represent and model with vector quantities.
- Perform operations on vectors. - Perform operations on matrices and use matrices in applications.

Arithmetic of

Expressions

- Perform arithmetic operations on polynomials - Understand the relationship between zeros and factors of polynomials; study the nature of functions and their graphs (zeroes, asymptotes, singularities, etc.)
- Use polynomial identities to solve problems - Rewrite rational expressions

Creating Equations and Modeling Problems - Create equations that describe numbers, relationships, and problem situations Reasoning with Equations and Inequalities - Understand solving equations as a process of reasoning and explain the reasoning

- Solve equations and inequalities in one variable - Solve systems of equations using different methods
Represent and solve equations and inequalities graphically and algebraically

Functions and Operations on Functions

Interpreting Functions

- Understand the concept of a function and use function notation
- Interpret functions that arise in applications
in terms of the context
- Analyze functions using different
representations and with respect to their
domain and range
Building Functions
- Build a function that models a relationship
between two quantities
- Build new functions from existing functions (By adding, subtracting, multiplying, dividing, and composing functions)
Linear, Quadratic, and Exponential Models - Construct and compare linear, quadratic, and exponential models and solve problems - Interpret expressions for functions in terms of the situation they model
Trigonometric Functions
- Extend the domain of trigonometric
functions using the unit circle
- Model periodic phenomena with trigonometric functions
- Prove and apply trigonometric identities Special Functions: Piecewise, step, integer, absolute function

Congruence

- Experiment with transformations in the plane - Understand congruence in terms of rigid motions - Prove geometric theorems
- Make geometric constructions

Similarity, Right Triangles, and Trigonometry - Understand similarity in terms of similarity transformations

- Prove theorems involving similarity
- Define trigonometric ratios and solve problems involving right triangles
- Apply trigonometry to general triangles

Circles

- Understand and apply theorems about circles - Find arc lengths and areas of sectors of circles Expressing Geometric Properties with Equations - Translate between the geometric description and the equation for a conic sections (parabola, ellipse, circle, hyperbola, pair of straight lines)
- Use coordinate systems to prove simple geometric theorems algebraically
Geometric Measurement and Dimension
- Explain volume formulas and use them to solve problems
- Visualize relationships between two dimensional and three-dimensional objects
Modeling with Geometry
- apply geometric concepts in modeling situations

Discrete Models: Statistics and Probability
Interpreting Categorical and Quantitative Data - Summarize, represent, and interpret data on a single count or measurement variable

- Summarize, represent, and interpret data on two categorical and quantitative variables - Interpret linear models

Making Inferences and Justifying Conclusions - Understand and evaluate random processes underlying statistical experiments

- Make inferences and justify conclusions from sample surveys, experiments and observational studies

Conditional Probability and the Rules of

 ProbabilityUnderstand independence and conditiona probability and use them to interpret data - Use the rules of probability to compute probabilities of compound events in a uniform probability model
Using Probability to Make Decisions - Calculate expected values and use them to solve problems
Use probability to evaluate outcomes of decisions

Modeling

 them is appropriately a creative process. Like every such process, this depends on acquired expertise as well as creativity

Common Core K-12 Mathematical Practices

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.

Elements of Effective Mathematics Teaching (Sharma)

1. Integrate language, concepts, and procedures of mathematics

2. Know that mathematics is the study of patterns in quantity and space
3. Levels of knowing a mathematics idea: intuitive, concrete, pictorial, abstract, application, and communications 4. Questioning Process: the quality of questions determines the effectiveness of teaching
4. Instructional models should range form discrete to continuous and should be exact, efficient, and elegant
5. Teacher must practice three roles: didactic, Socratic, and coaching
6. With proper scaffolding a teacher can fill the gaps in a student's skills and concepts and take the child to a higher level of thinking. 8. Effective scaffolding involves: common goals (teacher and student), continuous formative assessment, proper questioning, and fading
